修正超有机体:复杂真社会性的组织方法
导语
许多复杂的真社会性(eusociality)昆虫物种群体(如蜜蜂)在集体水平上表现出更类似于生物个体而非群体的特征。人们普遍认为,真社会性群体是自组织的系统。据此,即使是最复杂的社会系统也可以通过最初无序的系统各部分之间的局部相互作用来解释,而不需要任何等级控制。本文挑战了这一主流观点,通过对蜂群的案例研究,文章提出一种替代自组织的方法——等级组织方法(hierarchical-organizational approach),该方法关注复杂社会系统组织的等级性质。本文认为,由于复杂真社会群体内部的相互作用网络具有等级组织,从而在集体层面上形成了超有机体(superorganism)。
Mark Canciani、Argyris Arnellos、Alvaro Moreno | 作者
朱欣怡 | 译者
刘培源 | 审校
论文题目:Revising the Superorganism: An Organizational Approach to Complex Eusociality论文地址:https://www.frontiersin.org/articles/10.3389/fpsyg.2019.02653/full
1. 导论:真社会性&超有机体
2. 复杂真社会性的超有机体及其解释
3. 蜜蜂:两个群体过程的实例研究
4. 复杂真社会性的等级组织
5. 总结
1. 导论:真社会性&超有机体
1. 导论:真社会性&超有机体
2. 复杂真社会性的超有机体及其解释
2. 复杂真社会性的超有机体及其解释
3. 蜜蜂:两个群体过程的实例研究
3. 蜜蜂:两个群体过程的实例研究
除了内部信号保幼激素和卵黄蛋白原之外,来自蜂后、雏蜂和觅食蜂的信号也会影响每只工蜂的时间多义性时间表,从而影响每种工蜂的比例(图1)。
图1. 时间的多义性。A.mellifera蜂群中,工蜂在各临时工作之间的角色变换,用橙子圆圈表示。保幼激素(JH)的内部水平增加,表示为JH+。保幼激素生物合成受外部因素影响,包括成员间信号:QPM、brood ester、E-β-ocimene和ethyl oleate。QPM、brood ester和ethyl oleate抑制JH生物合成,用平端线标识。E-β-ocimene促进保幼激素生物合成,用圆端线标识。成员间信号允许群体水平上控制临时工蜂分工的比例,详见正文。时间轴代表了每种工蜂在夏季活跃时期的典型年龄。
图2. 成为蜂王还是工蜂?在A. mellifera(一种蜜蜂)中,任何受精卵都能发育成蜂王或工蜂。栉细胞的类型(橙色方块)和食物(蓝色方块)决定了幼虫的发育。大的蜂后细胞(Queen cell)和蜂王浆(Royal jelly)使受精卵的幼蜂发育成蜂后,而小的蜂巢细胞(Comb cell)和育雏食物(Brood food)使大量幼蜂发育成工蜂。蜂王浆在幼虫体内诱导表观遗传变化。蜂巢细胞的大小限制了幼虫的生长。更多详情见正文。
4. 复杂真社会性的等级组织
4. 复杂真社会性的等级组织
5. 总结
5. 总结
参考文献
Abbot, P., Abe, J., Alcock, J., Alizon, S., Alpedrinha, J. A. C., Andersson, M., et al. (2011). Inclusive fitness theory and eusociality. Nature 471, E1–E4. doi: 10.1038/nature09831
Amdam, G. V., and Omholt, S. W. (2003). The hive bee to forager transition in honeybee colonies: the double repressor hypothesis. J. Theor. Biol. 223, 451–464. doi: 10.1016/S0022-5193(03)00121-8
Anderson, C., and McShea, D. W. (2001). Individual versus social complexity, with particular reference to ant societies. Biol. Rev. 76, 211–237. doi: 10.1017/S1464793101005656
Archer, M. E. (1972). The significance of worker size in the seasonal development of the wasps Vespula vulgaris (L.) and Vespula germanica (F.). J. Entomol. 46, 175–183.
Arnellos, A. (2018). “From organizations of processes to organisms and other biological individuals” in Everything flows: Towards a processual philosophy of biology. eds. Nicholson, D., and Dupré, J. (Oxford: Oxford University Press), 199–221.
Arnellos, A., and Moreno, A. (2016). “Integrating constitution and interaction in the transition from unicellular to multicellular organisms” in The origins and consequences of multicellularity. eds. Niklas, K., and Newman, S. (Cambridge, MA: MIT Press), 249–275.
Arnellos, A., Moreno, A., and Ruiz-Mirazo, K. (2014). Organizational requirements for multicellular autonomy: insights from a comparative case study. Biol. Philos. 29, 851–884. doi: 10.1007/s10539-013-9387-x
Beetsma, J. (1979). The process of queen-worker differentiation in the honeybee. Bee World 60, 24–39.
Bich, L., Mossio, M., Ruiz-Mirazo, K., and Moreno, A. (2016). Biological regulation: controlling the system from within. Biol. Philos. 31, 237–265. doi: 10.1007/s10539-015-9497-8
Bonabeau, E., Theraulaz, G., Deneubourg, J.-L., Aron, S., and Camazine, S. (1997). Self-organization in social insects. Trends Ecol. Evol. 12, 188–193. doi: 10.1016/S0169-5347(97)01048-3
Boomsma, J. J., and Franks, N. R. (2006). Social insects: from selfish genes to self organisation and beyond. Trends Ecol. Evol. 21, 303–308. doi: 10.1016/j.tree.2006.04.001
Bourke, A. F. G. (1999). Colony size, social complexity and reproductive conflict in social insects. J. Evol. Biol. 12, 245–257.
Burchill, A. T., and Moreau, C. S. (2016). Colony size evolution in ants: macroevolutionary trends. Insect. Soc. 63, 291–298. doi: 10.1007/s00040-016-0465-3
Damuth, J., and Heisler, L. I. (1988). Alternative formulations of multilevel selection. Biol. Philos. 3, 407–430. doi: 10.1007/BF00647962
Detrain, C., and Deneubourg, J.-L. (2006). Self-organized structures in a superorganism: do ants “behave” like molecules? Phys Life Rev 3, 162–187. doi: 10.1016/j.plrev.2006.07.001
Emerson, A. E. (1939). Social coordination and the Superorganism. Am. Midl. Nat. 21, 182–209. doi: 10.2307/2420380
Emerson, A. E. (1952). “The supraorganismic aspects of the society” in Structure et Physiologie des Sociétés Animales, Colloques Internationaux du Centre National de la Recherche Scientifique. Vol. 34 (Paris: Centre National de la Recherche Scientifique (CNRS)), 333–354.
Fewell, J. H., and Harrison, J. F. (2016). Scaling of work and energy use in social insect colonies. Behav. Ecol. Sociobiol. 70, 1047–1061. doi: 10.1007/s00265-016-2097-z
Fewell, J. H., Schmidt, S., and Taylor, T. (2009). “Division of labor in the context of complexity” in Organization of insect societies. eds. Gadau, J., and Fewell, J. (Cambridge, MA: Harvard University Press).
Gadagkar, R. (1990). Origin and evolution of eusociality: a perspective from studying primitively eusocial wasps. J. Genet. 69, 113–125. doi: 10.1007/BF02927973
Gordon, D. M. (1996). The organization of work in social insect colonies. Nature 380, 121–124. doi: 10.1038/380121a0
Haber, M. (2013). “Colonies are individuals: revisiting the superorganism revival” in From groups to individuals: Evolution and emerging individuality. eds. Bouchard, F., and Huneman, P. (Cambridge, MA: MIT Press).
Hamilton, W. D. (1964a). The genetical evolution of social behaviour I. J. Theor. Biol. 7, 1–16.
Hamilton, W. D. (1964b). The genetical evolution of social behaviour II. J. Theor. Biol. 7, 17–52.
Hamilton, A., and Fewell, J. (2013). “Groups, individuals, and the emergence of sociality: the case of division of labor” in From groups to individuals: Evolution and emerging individuality. eds. Bouchard, F., and Huneman, P. (Cambridge, MA: MIT Press).
Helanterä, H. (2016). An organismal perspective on the evolution of insect societies. Front. Ecol. Evol. 4:6. doi: 10.3389/fevo.2016.00006
Holland, O., and Melhuish, C. (1999). Stigmergy, self-organization, and sorting in collective robotics. Artif. Life 5, 173–202. doi: 10.1162/106454699568737
Hölldobler, B., and Wilson, E. O. (2009). The superorganism. New York, NY: W. W. Norton & Company, Inc.
Hou, C., Kaspari, M., Vander Zanden, H. B., and Gillooly, J. F. (2010). Energetic basis of colonial living in social insects. Proc. Natl. Acad. Sci. USA 107, 3634–3638. doi: 10.1073/pnas.0908071107
Huang, Z.-Y., and Robinson, G. E. (1992). Honeybee colony integration: worker-worker interactions mediate hormonally regulated plasticity in division of labor. Proc. Natl. Acad. Sci. USA 89, 11726–11729.
Huang, Z.-Y., and Robinson, G. E. (1996). Regulation of honey bee division of labor by colony age demography. Behav. Ecol. Sociobiol. 39, 147–158. doi: 10.1007/s002650050276
Jeanne, R. L. (1980). Evolution of social behavior in the Vespidae. Annu. Rev. Entomol. 25, 371–396. doi: 10.1146/annurev.en.25.010180.002103
Johnson, B. R. (2008). Within-nest temporal polyethism in the honey bee. Behav. Ecol. Sociobiol. 62, 777–784. doi: 10.1007/s00265-007-0503-2
Johnson, B. R., and Linksvayer, T. A. (2010). Deconstructing the superorganism: social physiology, groundplans, and sociogenomics. Q. Rev. Biol. 85, 57–79. doi: 10.1086/650290
Kaatz, H.-H., Hildebrandt, H., and Engels, W. (1992). Primer effect of queen pheromone on juvenile hormone biosynthesis in adult worker bees. J. Comp. Physiol. B 162, 588–592.
Leoncini, I., Le Conte, Y., Costagliola, G., Plettner, E., Toth, A. L., Wang, M., et al. (2004). Regulation of behavioral maturation by a primer pheromone produced by adult worker honey bees. Proc. Natl. Acad. Sci. USA 101, 17559–17564. doi: 10.1073/pnas.0407652101
Lillico-Ouachour, A., and Abouheif, E. (2017). Regulation, development, and evolution of caste ratios in the hyperdiverse ant genus Pheidole. Curr. Opin. Insect Sci. 19, 43–51. doi: 10.1016/j.cois.2016.11.003
Lyko, F., Foret, S., Kucharski, R., Wolf, S., Flackenhayn, C., and Maleszka, R. (2010). The honey bee Epigenomes: differential methylation of brain DNA in queen and workers. PLoS Biol. 8:e1000506. doi: 10.1371/journal.pbio.1000506
Maisonnasse, A., Alaux, C., Deslay, D., Crauser, D., Gines, C., Plettner, E., et al. (2010a). New insights into honey bee (Apis mellifera) pheromone communication. Is the queen mandibular pheromone alone in colony regulation? Front. Zool. 7:18. doi: 10.1186/1742-9994-7-18
Maisonnasse, A., Lenoir, J.-C., Beslay, D., Crauser, D., and Le Conte, Y. (2010b). E-β-ocimene, a volatile brood pheromone involved in social regulation in the honey bee Colony (Apis mellifera). PLoS One 5:e13531. doi: 10.1371/journal.pone.0013531
Maynard Smith, J., and Szathmáry, E. (1995). The major transitions in evolution. Oxford: Oxford University Press.
Moreno, A., and Mossio, M. (2015). Biological autonomy: A philosophical and theoretical enquiry. Dordrecht: Springer.
Nelson, C. M., Ihle, K. E., Fondrk, M. K., Page, R. E. Jr., and Amdam, G. V. (2007). The gene vitellogenin has multiple coordinating effects on social organization. PLoS Biol. 5, 673–677. doi: 10.1371/journal.pbio.0050062
Nowak, M. A., Tarnita, C. E., and Wilson, E. O. (2010). The evolution of eusociality. Nature 466, 1057–1062. doi: 10.1038/nature09205
Okasha, S. (2014). The relation between kin and multilevel selection: an approach using causal graphs. Br. J. Philos. Sci. 67, 435–470. doi: 10.1093/bjps/axu047
Page, R. E. Jr., and Erber, J. (2002). Levels of behavioral organization and the evolution of division of labor. Naturwissenschaften 89, 91–106. doi: 10.1007/s00114-002-0299-x
Page, R. E. Jr., and Peng, C. Y. S. (2001). Aging and development in social insects with emphasis on the honey bee, Apis mellifera L. Exp. Gerontol. 36, 695–711. doi: 10.1016/S0531-5565(00)00236-9
Pankiw, T., Huang, Z.-Y., Winston, M. L., and Robinson, G. E. (1998a). Queen mandibular gland pheromone influences worker honey bee (Apis mellifera L.) foraging ontogeny and juvenile hormone titers. J. Insect Physiol. 44, 685–692.
Pankiw, T., Page, R. E. Jr., and Fondrk, M. K. (1998b). Brood pheromone stimulates pollen foraging in honey bees (Apis mellifera). Behav. Ecol. Sociobiol. 44, 193–198.
Potter, N. B. (1964). A study of the biology of the common wasp, Vespula vulgaris L., with special reference to the foraging behaviour. Ph.D. thesis. Bristol: University of Bristol.
Pradeu, T. (2016). Organisms or biological individuals? Combining physiological and evolutionary individuality. Biol. Philos. 31, 797–817. doi: 10.1007/s10539-016-9551-1
Queller, D. C., and Strassmann, J. E. (2009). Beyond society: the evolution of organismality. Philos. Trans. R. Soc. B 364, 3143–3155. doi: 10.1098/rstb.2009.0095
Richards, O. W. (1971). The biology of the social wasps (hymenoptera, Vespidae). Biol. Rev. 46, 483–528. doi: 10.1111/j.1469-185X.1971.tb01054.x
Robinson, G. E. (1992). Regulation of division of labor in insect societies. Annu. Rev. Entomol. 37, 637–665. doi: 10.1146/annurev.en.37.010192.003225
Robinson, G. E., Page, R. E. Jr., Strambi, C., and Strambi, A. (1989). Hormonal and genetic control of behavioral integration honey bee colonies. Science 246, 109–112. doi: 10.1126/science.246.4926.109
Ronai, I., Barton, D. A., Oldroyd, B. P., and Vergoz, V. (2015). Regulation of oogenesis in honey bee workers via programed cell death. J. Insect Physiol. 81, 36–41. doi: 10.1016/j.jinsphys.2015.06.014
Schulz, D. J., Sullivan, J. P., and Robinson, G. E. (2002). Juvenile hormone and octopamine in the regulation of division of labor in honey bee colonies. Horm. Behav. 42, 222–231. doi: 10.1006/hbeh.2002.1806
Seeley, T. D. (1982). Adaptive significance of the age polyethism schedule in honeybee colonies. Behav. Ecol. Sociobiol. 11, 287–293. doi: 10.1007/BF00299306
Slessor, K. N., Winston, M. L., and Le Conte, Y. (2005). Pheromone communication in the honeybee (Apis mellifera L.). J. Chem. Ecol. 31, 2731–2745. doi: 10.1007/s10886-005-7623-9
Smith, M. L., Ostwald, M. M., and Seeley, T. D. (2016). Honey bee sociometry: tracking honey bee colonies and their nest contents from colony founding until death. Insect. Soc. 63, 553–563. doi: 10.1007/s00040-016-0499-6
Wang, Y., Ma, L.-T., and Xu, B.-H. (2015). Diversity in life history of queen and worker honey bees, Apis mellifera L. J. Asia Pac. Entomol. 18, 145–149. doi: 10.1016/j.aspen.2014.11.005
Wheeler, W. M. (1911). The ant-colony as an organism. J. Morphol. 22, 307–325. doi: 10.1002/jmor.1050220206
Wheeler, W. M. (1920). The temitodoxa, or biology and society. Sci. Mon. 10, 113–124.
Wheeler, W. M. (1928). The social insects. London: Kegan Paul, Trench, Trubner & Co., Ltd.
Wilson, E. O. (1971). The insect societies. Cambridge, MA: Harvard University Press.
Wilson, E. O., and Hölldobler, B. (2005). Eusociality: origin and consequences. Proc. Natl. Acad. Sci. USA 102, 13367–13371. doi: 10.1073/pnas.0505858102
Wilson, D. S., and Sober, E. (1989). Reviving the superorganism. J. Theor. Biol. 136, 337–356. doi: 10.1016/S0022-5193(89)80169-9
Wilson, D. S., and Wilson, E. O. (2007). Rethinking the theoretical foundation of sociobiology. Q. Rev. Biol. 82, 327–348. doi: 10.1086/522809
(参考文献可上下滑动查看)
复杂科学最新论文
推荐阅读